
Detection Model for CSRF and Broken
Authentication and Session Management Attack

Virginia Mary Nadar#1, Madhumita Chatterjee#2, Leena Jacob#3

#1,2Department of Information Technology
#3Department of Computer Engineering

Mumbai University
PIIT, New Panvel, Navi Mumbai, India

Abstract—Online application security is information security
that consist of security of websites, web applications and or
web services. Developed online application security relies on
the foundation of application security but focuses on world
wide web and their libraries. Due to the advancement in Web
2.0, more knowledge sharing through social networking and
increasing business adoption over the web for doing business
and delivering services, web applications are directly
attacked. Attackers rather try to compromise the company
network or the users accessing the website by forcing them to
click on the forged malicious input, because of which industry
is focusing more attention to online application security along
with security of the underlying computer network and
operating systems. Online application designing should be
improved by including security analysis and checks at early
stages of development as well as throughout the software
development life-cycle. As most of the existing systems detect
only one attack at a time with limited rules, we propose an
enhanced model that can detect two attacks within the same
simulation environment with updated rule libraries.

Keywords— Cross-Site Request Forgery, CSRF, Broken
Authentication and Session Management, XSS

I. INTRODUCTION
Security test is a method of evaluating the weakness or

flaws of a computer system or a network by methodically
validating to monitor the quality of application security
controls. Online application security test aims on checking
the security of different online applications. A security test
includes filtered analysis of the application for any design
flaws, coding mistakes or component misconfiguration.
Whether if any security drawbacks are identified, the client
is alerted.

Vulnerability is identifying failure and/or flaws in a
system's design, implementation, working or management
that exploits the system's security objectives.

Threat is defined in terms of a malicious external
attacker, an internal user, a system instability, etc which
can endanger the assets owned by an application like
resources of value, such as the data in a database or in the
file system by exploiting vulnerability.

Malicious user can probably use many different ways
to do harm to the business or organization online
application. Every path of the application represents a risk
that may or may not require to warrant attention.

A test explains an action to depict that whether an
online application meets the security requirements of its
stakeholders or not.

The layout of the paper is as follows: Section I gives
Introduction of CSRF and Broken Authentication and
Session Management attack. Section II about Literature
Survey, Section III explains the Proposed System . Section
IV gives the Conclusion of the study.

II. LITERATURE SURVEY

We highlight the relevant literature survey that uses
various techniques to detect CSRF and Broken
Authentication and Session Management attacks. The goal
of this literature survey is to classify the various techniques
and methods that will help identify the related attack to that
of the proposed architecture. It provides an appropriate
solution that will help to detect the attack and to notify
client of the same.

Hossain Shahriar and Mohammad Zulkernine, 2010 [1]
explains the identification of CSRF attacks with the motive
of visibility and content checking of suspected requests.
The working of the system is to intercept a suspected
request containing parameters and inputs in the value field.
In an open window it relates them with one of the visible
forms.

Jinxin You and Fan Guo, 2014 [2] proposed javascript
delegation mechanism to combine forms with onfocus and
onsubmit events and then dynamically created requests that
was effectively handled. The evaluation results show that
improved CSRFGuard can be effective to defend CSRF
attacks.

Yin-Chang Sung, Michael Cheng, Yi Cho, Chi-Wei
Wang, Chia-Wei Hsu, Shiuhpyng Winston Shieh, 2013 [3]
presented a technique of light-weight CSRF detection
method in which a filtered system is used to check
suspicious scripts on the server-side. This technique avoids
using script filtering and rewriting approach and uses the
method that is based on a new labelling mechanism called
Content Box.

Yusuke Takamatsu, Yuji Kosuga and Kenji Kono,
2012 [4] explained a new system of automatically detecting
session management vulnerabilities in online applications
by performing real time attacks in the simulated
environment. Experiments demonstrated that the
techniques was able to detect vulnerabilities in some real-
world web applications.

Raymond Lukanta, Yudistira Asnar, A. Imam
Kistijantoro, 2014 [5] proposed a session management
vulnerability scanning tool which was designed and

Virginia Mary Nadar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1801-1804

www.ijcsit.com 1801

developed using Nikto and Google Chrome extension.
Flaws in vulnerability that can be detected is session
management vulnerabilities that includes session fixation,
CSRF, and insufficient cookies attributes.

Birhanu Eshete, Adolfo Villafiorita, Komminist
Weldemariam, 2011 [6] performed assessment of security
misconfiguration vulnerabilities in web server
environments. Developed a usable tool to perform
automated web security configuration vulnerability
auditing, fixing and also safety rating for Apache, MySQL
and PHP. Also conducted a detailed evaluation of the tool
on eleven real-life online application development and
deployment environments.

III.PROPOSED SYSTEM
The main motivation towards the proposed system is to

improve online application security, to manage real
security risks, to develop a secure software development
life-cycle (SDLC), to avoid data breach or data
manipulation and also to protect the company brand and to
enable new businesses online. Therefore, a new
architecture is proposed so that it will help to enhance the
security of online web applications.

The proposed architecture(refer Figure: 1) helps to
detect CSRF attack and Broken Authentication and Session
Management attack.A complete new work flow is designed
for Broken Authentication and Session Management attack
which overcomes the disadvantages of the existing
solutions. The proposed architecture will be implemented
using ASP.NET installed on windows operating system.
MySQL Server 2008 is needed for the database to maintain
a log file of the input request that is generated and
processed.

Figure 1: Block Diagram of the Proposed Architecture

A. Cross-Site Request Forgery Attack:
In Cross-site request forgery, the risk of a third-party

request to a web application on behalf of an authenticated
user who unknowingly executes the link on a malicious site
or is the victim of cross- site scripting injecting HTML
content to the view to perform the attack is explained.
CSRF is an attack against web application users who are
vulnerable to attack. The attacker helps a victim's browser
to conduct an unwanted action on a legitimate website via a
malicious link. Allows an attacker to perform unauthorized
activities without the knowledge of the authenticated user.
CSRF is also known as Cross-Site Reference Forgery.
1) Role of Session Manager in the Proposed System:

Session Manager helps to manage the web application
simulation environment. It guides to detect
vulnerability of the incoming request and identify the
type of attack if any. It helps to process the incoming
request and check for either CSRF attack or Broken
Authentication and Session Management attack and
alert the authenticated client of the same.

2) Request Checker:
In request checker module, the incoming request from
a particular user is checked. The GET and the POST
field of the request is checked to identify whether it
consist of any parameters or values in the input field.
Furthermore, the request checker also helps in the
tokenization of the incoming request.

3) Window and Form Comparitor:
Following component evaluates all the open windows
and forms that already exist online that are
authenticated and are not vulnerable. It checks whether
the incoming request matches to any of the open
window or forms that is validated. If no match is found
then the request is identified to be suspicious and is
forwarded to the next module for verification.

4) Modified Request Differentiator:
In modified request differentiator, the requested page
is checked. Unvalidated scripts and tags which are not
present in the whitelist is identified to be malicious.
Attackers mostly inject malicious script in the header
fields of the GET and the POST request. Therefore, the
script tags of the GET and the POST request should be
validated with whitelist which is predefined.

5) Attack Handler Module:
The module identifies a suspected request and
generates an alert message to the browser. It alerts the
user about the difference between the original request
to that of the modified request in the form. Further, the
module reports expected and the actual content type
mismatch. User makes a decision whether to execute
the request or no.

6) Attack Rule Library:
It defines all the possible rules and policies of CSRF
attack that is needed to validate the incoming request
to check if any malicious script is injected into the
request. If any malicious script is found in the
incoming request then it is passed on to different
validating blocks of CSRF module. If the request does
not contain any malicious script then the request is
allowed.

Virginia Mary Nadar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1801-1804

www.ijcsit.com 1802

7) Attack Database Repository:
This module maintains a log file of all the incoming
request and generates a report for further system
enhancement.

B. Broken Authentication and Session Management
Attack:

A user session is a working context that holds instance
specific application data for a user. If a user session is
authenticated, then authorization can be enforced so
application functionality executes in the boundaries of a
user's permissions and privileges.
1) Password Length:

Password should be longer than 10 characters. This
becomes difficult for the attacker to crack the
password and perform any malicious activity without
the knowledge of the authenticated user.

2) Password Complexity:
Every online application should enforce users to create
a complex password.
From the below mentioned rules, atleast 3 rules should
be satisfied to generate a complicated password:
• Minimum one UPPERCASE character (A-Z)
• Atleast one lowercase character (a-z)
• At the most one digit (0-9)
• One special character. (punctuation)- consider

space as special characters too.
• Atleast 10 characters.
• Atmost 128 characters.
• Same two identical characters in a row should not

be present. (e.g., 111 not allowed)
3) Password Topologies:

• Commonly used password topology should be
avoided.

• Pattern generation of the password should be
different every time.

• Passwords should be changed between regular
time intervals by the user.

If the password does not match the required criteria of
password length and password topology then it is
considered to be a weak password that can be attacked
by the attacker and so a alert message is send to the
client as per requirements. Passwords should be strong
enough so that it is not easy for the attacker to
manipulate or guess the password via any method of
brute-force attack. With regard to implement a pattern
of good password, the above mentioned rules should
be followed and checked for any vulnerability that can
be exploited by the attacker if there is any weakness
that is been detected of the user.

4) Session ID Name Fingerprinting:
The pattern in which the session id is generated should
not be descriptive. It should be meaningless so that it
becomes difficult for the attacker to guess session id.
Web application development framework help to
reveal out the session id details. For eg, PHPSESSION
(PHP), JSESSIONID (J2EE), CFID and CFTOKEN
(ColdFusion), ASP.NET_SessionId(ASP.NET) will
help attacker know on which language the web
application is developed.

To avoid this, it is suggested to modify the by default
session id name that is generated by the web
development framework to a generic name.

5) Session ID Length:
Range of the session id should be long enough in such
a way that it becomes difficult for the attacker to guess
the value of the session id by means of any brute force
attack. Values of the session id should be unique for
every session so that it is difficult to hack sessions.
The value field of the session id should be atleast of
128 bits (16 bytes).
Long session id will help prevent against session
fixation attack as it will be difficult for the attacker to
guess or perform any brute force attack on session ID
is longer than the usual pattern.

6) Session ID Entropy:
The session id generated should be unpredictable so
that the attacker finds it difficult to guess the id by
means of any statistical analysis technique. ID
generated should be unique for every session. This can
be done with the help of a Pseudo Random Number
Generation where the seed value changes for every
session.

7) Content or Value of Session ID :
Session contents or the values of the session id should
be meaningless so that it is not easy for the attacker to
guess id. If the session id is descriptive and easy to
crack then it is easy for the attacker to manipulate the
session id and inject malicious script.
One technique to create meaningless session id is to
create cryptographically strong session id through the
method of cryptographic hash functions such as SHA1
(160 bits). This encryption will help protect the ID
content and prevent attackers from inserting malicious
script. The algorithm will help validate the Session ID
content and will help prevent against session
management attacks. Strong session ids will help
protect victims navigation onto the web browsers
without attackers interference.

IV. CONCLUSION

As CSRF and Broken Authentication and Session
Management is considered as one of the top most web
application attack, various web applications ascertain the
importance of web application security. The proposed
architecture will be cost effective as it helps to detect two
attacks within the same simulation environment with
enhanced rules and policies. With the help of the proposed
system, by detecting session management attack it also
helps to detect and prevent cross-site scripting (xss) attacks.
Therefore, the proposed architecture can further be
enhancement to detect xss attacks.

REFERENCES
[1] “ Client-Side Detection of Cross-Site Forgery Attacks”, Hossain

Shahriar and Mohammad Zulkernine, 2010 IEEE 21st International
Symposium on Software Reliability Engineering.

[2] “Improved CSRFGuard for CSRF Attacks Defense on Java EE
Platform”, Jinxin You and Fan Guo, The 9th International
Conference on Computer Science & Education (ICCSE 2014)

[3] “ Automated Detection of Session Management Vulnerabilities in
Web Application”, Yusuke Takamatsu, Yuji Kosuga and Kenji

Virginia Mary Nadar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1801-1804

www.ijcsit.com 1803

Kono, 2012 Tenth Annual International Conference on privacy,
Security and Trust.

[4] “A Vulnerability Scanning Tool for Session Management
Vulnerabilities”, Raymond Lukanta, Yudistira Asnar, A. Imam
Kistijantoro, 2014 IEEE.

[5] “Early Detection of Security Misconfiguration Vulnerabilities in
Web Applications”, Birhanu Eshete, Adolfo Villafiorita, Komminist
Weldemariam, 2011 Sixth International Conference on Availability,
Reliability and Security.

[6] “ Threat Modelling for CSRF Attacks”, Xiaoli Lin, Pavol Zavarsky,
Ron Ruhl and Dale Lindskog, 2009 International Conference on
Computational Science and Engineering.

[7] “ A Privacy-Preserving Defense Mechanism Against Request
Forgery Attacks”, Ben S.Y. Fung and Patrick P.C.Lee, 2011
International Joint Conference of IEEE TrustCom-11/IEEE ICESS-
11/FCST-11.

[8] “ Preventing Cross-Site Request Forgery Attacks”, Nenand
Jovanovic, Engin Kirda and Christopher Kruegel, Technical
University of Vienna, IEEE 2006.

[9] “ SWART: Secure Web Application Response Tool”, Kanika
Sharma and Naresh Kumar, 2013 International Conference on
Control, Computing, Communication and Materials (ICCCCM)

Virginia Mary Nadar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1801-1804

www.ijcsit.com 1804

